

Approval Specification	Customer's Approval Certificate		
то:	Please return this copy as a certification of your approval		
Part No.:	Checked & Approved by:		
Customer's Part No.:	Date:		

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

Tel: +86-010-58937	383
--------------------	-----

Fax: +86-010-58937263

E-mail: zxsf sales@163.com

OO: 2109300457

Website: <u>http://www.bjzxsf.net</u>

Add: No 201, Block A. Building 3. Yongjie Beilu Yongfeng high-tech industrial base Haidian District Beijing city

Part No.	-	SFR433K
Pages	:	6
Date	:	2014/9/11
Revision	:	1.0

(Pb)

SFR433K

Features

- 1-port Resonator
- Ceramic Package for Surface Mounted Technology (SMT)
- RoHS compatible
- Package size 3.20x2.50x0.70mm³
- Electrostatic Sensitive Device(ESD)

Application

Typical Low-Power Transmitter Application

RF Bypass

+VDC

Bottom View

R3

C1

C2

L1

R2

+VDC

Output

Package Dimensions (DCC4C)

Pin Configuration

3

1	Input/ Output	
3	Output/ Input	
2,4	Ground	

Please read notes at the end of this document.

SFR433K

Marking

SF	Trademark	
R	SAW Resonator	
433K	Part number	

Test Circuit

Equivalent LC Model

Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

Please read notes at the end of this document.

- 3 -

SFR433K

Performance

Maximum Rating

ltem		Value	Unit
DC Voltage	V _{DC}	10	V
Operation Temperature	т	-40 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +125	°C
RF Power Dissipation	Р	10	dBm

Electronic Characteristics

Test Temperature: 25℃±2℃

Terminating source impedance: 50Ω

Terminating load impedance: 50Ω

	ltem		Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc		433.920		MHz
Frequency	Tolerance from 433.920MHz	$ riangle f_{c}$		± 75		KHz
Insertion Loss(r	nin)	IL		1.5	2.0	dB
Quality Easter	Unloaded Q	Qu		18362		
Quality Factor	50Ω Loaded Q	Q_L		2150		
Temperature Stability	Turnover Temperature	T ₀	25	40	55	°C
	Turnover Frequency	fo		fc		
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation R	esistance between Any Two Pins		1.0			MΩ
	Motional Resistance	R _M		13.2	18.0	Ω
RF Equivalent	Motional Inductance	L _M		89.4	110.2	μH
RLC Model	Motional Capacitance	См		1.5		fF
	Static Capacitance	C ₀	1.45	1.75	2.05	pF

SFR433K

Tr1 S21 Log Mag 5.000dB/ Ref -1.444*dB [RT] 8.556* >1 433.91688 MHz -1.4493 dB 3.556* 1 -1.444* -6.444* -11.44* -16.44* -21.44* -26.44* -31.44* -36.44* -41.44* IFBW 70 kHz 1 Center 433.92 MHz Span 1 MHz Cor

Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1	Temperature Storage	 (1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -55℃±3℃, Duration: 250h, Recovery time: 2h±0.5h 		
2	Humidity Test	Conditions: 60℃±2℃ , 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-40℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55HzAmplitude:1.5mmDirections: X,Y and ZDuration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245°C±5°C Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5		
7	Resistance to Soldering Heat	 (1)Thickness of PCB:1mm , Solder condition: 260°C±5°C , Duration: 10±1s (2)Temperature of Soldering Iron: 350°C±10°C , Duration: 3~4s , Recovery time : 2 ± 0.5h 		

Recommended Reflow Soldering Diagram

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.